Projeto de pesquisa “Detectores acústicos automáticos de espécies de aves noturnas em seu bioma natural” do Departamento de Engenharia Mecânica da Escola Politécnica (Laboratório de Acústica e Meio Ambiente).
Orientador: Prof. Dr. Linilson Padovese
Co-orientador: Prof. Dr. Paulo Hubert
“There is the need for shared datasets with annotations of a wide variety of calls for a large number of species if methods that are suitable for conservation work are to be developed.” — Automated birdsong recognition in complex acoustic environments: a review
https://pdfs.semanticscholar.org/74e1/fd40d99b811e7a6b2fa897c9d72b471aaf13.pdf
https://lis-unicamp.github.io/wp-content/uploads/2017/07/LeandroTacioli-Mestrado.pdf (Acesso em 2019-04-14)
file:///C:/Users/ap_da/OneDrive/Documents/mestrado/ignorar/automated%20birdsong%20review.pdf (Acesso em 2019-05-27)
https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837 (Acesso em 2019-04-14)
https://github.com/douglas125/SpeechCmdRecognition (Acesso em 2019-04-14)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179403 (Acesso em 2019-04-14)
http://www.naturalhistory.com.br/wasis.html (Acesso em 2019-04-14)
http://c4dm.eecs.qmul.ac.uk/papers/2017/OSA_article_HPamula_etal_04082017.pdf (Acesso em 2019-07-02)
http://ceur-ws.org/Vol-1609/16090560.pdf (Acesso em 2019-07-06)
https://arxiv.org/ftp/arxiv/papers/1609/1609.08408.pdf (Acesso em 2019-07-06)
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://blogs.rstudio.com/tensorflow/posts/2019-02-07-audio-background/ (Acesso em 2019-08-01)